深度学习模型端侧部署

2023/04/09 21:00:00 dl 共 848 字,约 3 分钟

天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为。——《孟子·告子下》

description

ADD Custom OP

Model

ONNX

ONNX-Open Neural Network Exchange

Most PPLNN supported ops are based on onnx opset 11. If you are using onnx model with different opset version, you need to convert your onnx model opset version to 11.

ONNX officially provided an opset convert tool version_converter. Its tutorials is at: Version Conversion. Please update to onnx v1.11(or above) and try version_converter:

import onnx
from onnx import version_converter

model = onnx.load("<your_path_to_onnx_model>")
converted_model = version_converter.convert_version(onnx_model, 11)
onnx.save(converted_model, "<your_save_path>")

PyTorch to ONNX

https://pytorch.org/docs/master/onnx.html

Deploy ONNX

https://onnx.ai/supported-tools.html#deployModel

Qualcomm Mobile Deploy

Snapdragon Neural Processing Engine SDK

文档信息

打赏一下呗

对你有帮助,那就打赏一下吧

扫码支持
扫码打赏,金额随意

相关文章

文章搜索

    Post Tags Cloud

    Table of Contents